当前位置:文档下载 > 所有分类 > IT/计算机 > 计算机软件及应用 > 基于CUDA平台的GPU并行计算技术研究(终稿)
侵权投诉

基于CUDA平台的GPU并行计算技术研究(终稿)

cuda平台应用

CUDA架构下GPU硬件结构

GPU与CPU的最大不同点在于硬件结构自身,而硬件结构不同是由于晶体管用途分布造成的,如图2.1所示。GPU比CPU在数据计算能力和存储器带框上有相对大的优势,在能耗和价格上付出的代价也相对较小,从而在异构操作协同处理运算上占领并行运算的一席之地。GPU作为图形渲染的主要硬件,因图像渲染运算的高度并行性,它可以采用添加ALU和Control Cache(存储器控制单元)的方式提高运算能力和存储器带宽。CPU的制造厂家是把更多的晶体管用于复杂的控制单元以及缓冲区,而GPU的晶体管作为ALU的居多,从何提高GPU的总体执行单元效率。

基于CUDA平台的GPU并行计算技术研究(终稿)

图2.1 CPU与GPU硬件结构比较

在传统的CPU+GPU异构并行的系统中,复杂逻辑的事务计算由CPU完成,这样的要求,也促使CPU采用分配大量缓存、分支预测以及复杂控制逻辑的方式较快得获取数据和指令,以此提高CPU的运算速率;而GPU负责的是计算高度密集的图像渲染工作,它通过分配更多的ALU来运行量大但相对简单的线程(Thread),且要求较高的存储器带宽以保证整体的数据传输速率。CPU和GPU的不同设计理念造就了这两个处理器的架构差异及性能差异,具体如下:

1)线程差异,CPU的多线程是一种软件粗粒度多线程,在执行的线程中断后,需要保存中断线程前后数据同时装载下一个线程的数据,这个过程需要很大的时间成本;GPU的多线则不存在这样的数据交换过程,因此在并行执行过程中省去更多时间,提高效率。

2)计算核心差异,主流CPU采用多核技术,3到6条执行流水线在每个计算核心中,乱序执行、预测执行和大容量缓存技术都被采用到CPU核心中意达到提高指令级并行的目的,这些技术的加入也限制了更多核心数量的集成。而GPU集成了多个流多处理器,因此每个GPU可被看成1到30个SIMD处理器,其中每个SIMD处理器包含8个ID流处理器,GPU的并行则是利用了多个流处理器间的粗粒度并行及流多处理器内的细粒度数据并行。ALU较同时期CPU多的主流GPU在单精度浮点处理能力比CPU高大约15倍。

3)带宽差异,因GDDR存储器存在相对位置不一致导致CPU内存的信号完整性问题考虑比GPU显

第1页

猜你喜欢

返回顶部