亿万文档 免费下载
坐标转换的相关问题(椭球体、投影、坐标系统、转换、BEIJING54、XIAN80等)
坐标转换的相关问题(椭球体、投影、坐标系统、转换、BEIJING54、XIAN80等)
最近需要将一些数据进行转换,用到了一点坐标转换的知识,发现还来这么复杂^_^,觉得自己真是愧对了武汉大学以及中科院这么多年培养我,让我上了好多课却从来没有好好听,今天才知道其实很有用!不多废话,给您分享下我的坐标转换之路。
Part one: Background
地理坐标系与投影坐标系的区别 (cite
from:http://www.wendangxiazai.com/f?kz=354009166)
1、首先理解地理坐标系(Geographic coordinate system),Geographic coordinate system直译为地理坐标系统,是以经纬度为地图的存储单位的。很明显,Geographic coordinate system是球面坐标系统。我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求我们找到这样的一个椭球体。这样的椭球体具有特点:可以量化计算的。具有长半轴,短 半轴,偏心率。以下几行便是Krasovsky_1940椭球及其相应参数。 Spheroid: Krasovsky_1940
Semimajor Axis: 6378245.000000000000000000
Semiminor Axis: 6356863.018773047300000000
Inverse Flattening(扁率): 298.300000000000010000
然而有了这个椭球体以后还不够,还需要一个大地基准面将这个椭球定位。在坐标系统描述中,可以看到有这么一行:
Datum: D_Beijing_1954
表示,大地基准面是D_Beijing_1954。
有了Spheroid和Datum两个基本条件,地理坐标系统便可以使用。 完整参数:
Alias:
Abbreviation:
Remarks:
Angular Unit: Degree (0.017453292519943299)
Prime Meridian(起始经度): Greenwich (0.000000000000000000) Datum(大地基准面): D_Beijing_1954
Spheroid(参考椭球体): Krasovsky_1940
Semimajor Axis: 6378245.000000000000000000
Semiminor Axis: 6356863.018773047300000000
Inverse Flattening: 298.300000000000010000
2、接下来便是Projection coordinate system(投影坐标系统),首先看看投
猜你喜欢